Predicting clinical response in people at ultra-high risk of psychosis: a systematic and quantitative review

Andrea Mechelli1, a.mechelli@kcl.ac.uk, Diana Prata2,3, Charles Kefford4 and Shitij Kapur1

People at ultra-high risk (UHR) of psychosis have ~30% chance of developing the illness within two years. A range of pharmacological and psychosocial interventions are now available but there is great individual variation in clinical response. Here we examine the evidence for clinically applicable predictors of clinical response in people at UHR of psychosis. We report that currently there are no reliable predictive markers that can be used to optimise treatment. We argue that there is an urgent need for a better understanding of why some people at UHR of psychosis benefit from a certain treatment whereas others do not. This information will help clinicians make more-effective treatment decisions, and improve long-term clinical outcomes in this population.

Introduction
Psychosis is common, severely disabling and has a major socioeconomic impact [1]. The onset of the illness is typically preceded by a prodromal phase that is characterised by the emergence of ‘attenuated’ psychotic symptoms; because only about one-third of people with these symptoms subsequently develop a psychotic disorder, this phase is described as ultra-high risk (UHR) or at-risk mental state (ARMS) of psychosis [2]. In the past two decades, with the increasing appreciation of the necessity for early intervention in psychosis worldwide [3], a number of treatments have been employed to delay or prevent the onset of psychosis in people at UHR of psychosis. These treatments include antipsychotic medication [4–6], nutritional supplements such as omega-3 fatty acids [7] and psychological treatment [8–13]. A recent meta-analysis suggests that, based on evidence of very low to moderate quality, these interventions appear to be effective in delaying and even preventing the onset of psychosis [14]. However there is great individual variation in clinical response to treatment among people at UHR of psychosis. For example, although some respond well to antipsychotic medication and report minimal side-effects, others do not show any clinical benefits and suffer from life-threatening side-effects such as weight gain, hyperlipidemia, movement disorders and agranulocytosis [15]. Furthermore, persisting with treatment in people who do not benefit from it could lead to a worsening of symptoms [16]. One way of addressing these challenges is to gain a better understanding of why some people at UHR of psychosis benefit from a certain intervention whereas others do not, and then use this information to target delivery of intervention to the subgroup of patients most likely to benefit. In the present systematic and quantitative report, we therefore consider the current literature on predictors of clinical response to available treatments in this population (i.e. predictive markers).

Literature search and article evaluation
We searched the PubMed database for extant literature published online up to 16th February 2015, using the following search syntax: (marker OR biomarker OR outcome OR response OR prognosis OR prediction OR predictor OR predict) AND (at-risk mental state OR ultra-high risk OR ultrahigh risk). This identified articles containing the terms ‘marker’, ‘biomarker’, ‘outcome’, ‘response’, ‘prognosis’, ‘prediction’, ‘predictor’ or ‘predict’ in conjunction with ‘at-risk mental state’,
TABLE 1

Criteria for quality of evidence and effect size to grade predictive biomarkers Adapted, with permission, from [17].

<table>
<thead>
<tr>
<th>Quality of evidence</th>
<th>Approximate equivalence to drug effects</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>An observation of a positive result (P < 0.05, corrected for multiple comparisons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In an uncontrolled study</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>In a study controlled for relevant extraneous variables (confounding, nuisance or effect modifiers1), that is, matched, restricted or adjusted for treatment, age, gender and (for genetic studies) ethnicity</td>
<td>Exploratory</td>
<td>1</td>
</tr>
<tr>
<td>In a study as above (grade 1), but with an explicit a priori intent to discover a precisely defined biomarker, that is, with a given measure or modality, cut-off and direction of effect of biomarker and response</td>
<td>~Phase I drug trial</td>
<td>2</td>
</tr>
<tr>
<td>In a study as above (grade 2), but designed with adequate power informed by previous positive studies of the same biomarker, that is, replication in a larger cohort</td>
<td>~Phase II drug trial</td>
<td>3</td>
</tr>
<tr>
<td>In at least two studies as above (grade 3)</td>
<td>~Phase III drug trial</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect size</th>
<th>Approximate equivalence to drug effects</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>An observation of a statistically significant (positive) result (P < 0.05, corrected for multiple comparisons)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>With estimate from studies with quality of evidence ≤ 1</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>With marginal effect (OR < 1.3, SMD < 0.2 or r < 0.1)</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>With small effect size (OR = 1.3–1.5, SMD = 0.2–0.5 or r = 0.1–0.3)</td>
<td>Effect of psychiatric drugs on symptom improvement (median SMD = 0.41, mean SMD = 0.49)</td>
<td>2</td>
</tr>
<tr>
<td>With medium effect size (possibly rivalling the drug effect; OR = 1.5–2.0, SMD = 0.5–0.8 or r = 0.3–0.5)</td>
<td>Effect of antipsychotic drugs on acute symptom improvement (SMD = 0.51)</td>
<td>3</td>
</tr>
<tr>
<td>With large effect size (possibly exceeding the usual drug effect; OR > 2.0, SMD > 0.8 or r > 0.5)</td>
<td>Effect of antipsychotic drugs on relapse prevention (SMD = 0.92)</td>
<td>4</td>
</tr>
</tbody>
</table>

Abbreviations: OR, odds ratio; SMD, standard mean difference; r, correlation coefficient.
1 In genetic studies, this only needs to be applied in relation to the outcome variable, provided that genotypes are unknown (and thus naturally randomised) before subject inclusion, with the exception of ethnicity which affects linkage disequilibrium patterns.

‘ultra-high risk’ or ‘ultrahigh risk’ or related medical subject heading (MeSH) terms such as ‘biological markers’ or ‘psychotic disorders’ in any of the fields searchable in PubMed. We read the abstracts and/or full text of the articles yielded from this search with the aim of identifying those studies that had used a longitudinal design to examine predictors of clinical response to treatment. We then used a recently developed two-dimensional scale [17] to rate the clinical applicability of the predictive markers identified in these studies. This scale, which is reported in Table 1, was adapted from a biomarker rating system proposed by Lassere [18] and is based on quality of evidence (scored 1–4) and effect size (scored 1–4). Quality of evidence is assessed based on whether studies include a control group, test-specific hypotheses, are prospectively designed, appropriately powered and independently replicated; whereas effect size is assessed based on odds ratios. Predictive markers that reach a sum score of 6 (out of 8) are considered clinically applicable (i.e. particularly worthy of clinical consideration).

Systematic and quantitative review observations

Our literature search identified 314 articles published between 1990 and 2015. Careful examination of each article, however, revealed that only two studies had investigated predictors of clinical response to a given treatment and, as such, were relevant to the present article. In the first study, Morrison and colleagues carried out exploratory analyses of the impact of pre-treatment metacognitive and sociotropic scores on clinical response to cognitive therapy [13]; these exploratory analyses were carried out in the treatment group but not the control group and did not detect any statistically significant effects, resulting in a grade of 1 for quality of evidence and for effect size. According to our scoring system (Table 1) this yielded a sum score of 0 that was well below our threshold for clinical applicability. In the second study, Amminger and colleagues examined biological and clinical factors associated with clinical improvement following 12 weeks of treatment with long-chain omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) [19]. An initial analysis using standard univariate statistics revealed that higher levels of erythrocyte membrane α-linolenic acid (ALA; the parent fatty acid of the ω-3 family) predicted subsequent functional improvement in the treatment group but not in the placebo group. A subsequent analysis using multivariate machine learning confirmed that baseline fatty acids allowed prediction of response to treatment in the ω-3 PUFa group with high levels of sensitivity, specificity and accuracy. According to our
scoring system (Table 1), quality of evidence was rated as 1 on the basis that there was no a priori hypotheses concerning the direction of the effect; and effect size was rated as 4 based on a standard mean difference equal to 1.1. This yielded a sum score of 4 that was still below our threshold for clinical applicability. The vast majority of the other articles were concerned with nonspecific predictors of clinical outcome irrespective of treatment (n = 90), reported cross-sectional rather than longitudinal comparisons (n = 82), reviewed the existing literature without presenting new data (n = 64), tested the main effect of a treatment of interest without considering predictors of clinical response (n = 14) or focused on other clinical groups (n = 32). See Supplementary material available online for the full list of searched articles divided by category.

Differentiating between prognostic and predictive markers
Whereas previous reviews on clinical outcome in people at UHR of psychosis have focused on predictors of clinical outcome irrespective of treatment (i.e. prognostic markers) [20], here we examine the existing evidence for predictors of clinical response to available treatments (i.e. predictive markers). Our systematic and quantitative report indicates that at present we have no clinically applicable predictive markers that could be used to optimise treatment of this population. This conclusion is consistent with our previous systematic and quantitative review of predictors of treatment response in people with already established psychosis [17], where we found only one predictive biomarker meeting our criteria for clinical applicability (the HLA-DQB1 6672G>C SNP which predicts side-effects of clozapine administration). The current paucity of predictive markers, in UHR and established psychosis, might be explained by the methodological challenges of differentiating between predictors of clinical response to a given treatment of interest and nonspecific predictors of clinical outcome. However, although there is no doubt that designing a study that differentiates between these two types of markers requires careful consideration, this is by no means impossible based on lessons from other areas of medicine [21]. In particular, a pre-treatment variable can be considered a predictor of clinical response if it can be shown to have an interactive effect with treatment on clinical outcome; in other words, the effect of treatment on individual subjects does not depend on this pre-treatment variable [22]. Following this methodological framework [22], future studies should be able to differentiate between predictive (i.e. treatment-specific) and prognostic (i.e. treatment-nonspecific) markers, in people at UHR of psychosis and those who have developed the illness.

From clinical applicability to clinical utility
Although we have used a two-dimensional scale to rate the clinical applicability of predictive biomarkers in people at UHR of psychosis, we note that clinical applicability per se does not assure real-world clinical utility. This is because the clinical utility of a predictive marker depends not only on the effect size but also on the clinical context: a test with a small effect size that would prevent a fatal side-effect is more useful than one with a large effect that would prevent a minor rash [17]. In addition, clinical utility is dependent on the ability of a marker to generate a ‘divergent prediction’: a test that is highly accurate at predicting clinical response to a given treatment is not particularly useful if there are no alternative treatments [23]. A number of indices have been proposed in recent years with the aim of encapsulating the clinical utility of a marker in real-world clinical practice. For example, the number-needed-to-assess (NNA) refers to the number of individuals who need to be screened to result in one additional positive outcome [24]; this index was adapted from a well established measure of the impact of a new treatment known as number-needed-to-treat (NNN) [25]. Although these indices provide a better proxy of clinical utility than traditional statistical measures, it remains challenging to encapsulate the clinical utility of a marker into a simple and universal formula owing to the large number of factors such as cost of administration, potential risks and side effects, inconvenience and delays associated with testing (Fig. 1).

Concluding remarks
Here, we show that, at present, a clinician has no way of predicting whether a person at UHR of psychosis will or will not benefit from a given
treatment. There is therefore an urgent need for a better understanding of why some people at UHR of psychosis benefit from a certain treatment whereas others do not. This information will help clinicians make more-effective treatment decisions in their everyday clinical practice. For example, those people at UHR of psychosis who are likely to benefit could be offered psychological treatment, whereas those who are unlikely to benefit could be offered alternative interventions, such as fish oil. Such stratification of treatment would result in better long-term clinical outcome and quality of life among people at increased risk of developing psychosis.

Acknowledgements
This research was supported by a grant (ID99859) from the Medical Research Council (MRC) to A.M. and S.K. and (to D.P) a National Institute for Health Research (NIHR) fellowship (PCSKBZA). The funders had no role in the design of the study, the analysis and interpretation of the data, the drafting of the manuscript or the decision to submit the article for publication.

Appendix A. Supplementary data
Supplementary material related to this article can be found, in the online version, at http://dx.doi.org/10.1016/j.drudis.2015.03.003.

References
8 Bechdolf, A. et al. (2007) Randomized controlled multicentre trial of cognitive behavioural therapy in the early initial prodromal state: effects on social adjustment post treatment. Early Interv. Psychiatry 1, 71–78
24 Uher, R. et al. (2012) Biomarkers predicting treatment outcome in depression: what is clinically significant? Pharmacogenomics 13, 233–240

Andrea Mechelli1,2*, Diana Prata2,3, Charles Kefferd1, Shitij Kapur1

1Department of Psychiatry Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, SES BAF, UK
2Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, SES BAF, UK
3Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal

*Corresponding author: Department of Psychology Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, SES BAF, UK.